
ELeaRNT: Evolutionary Learning of
Rich Neural Network Topologies

Matteo Matteucci
Center for Automated Learning and Discovery

Technical Report N. CMU-CALD-02-103
matteo@cs.cmu.edu

Advisor:

Manuela Veloso
veloso@cs.cmu.edu

In this paper we present ELeaRNT an evolutionary strategy which evolves rich
neural network topologies in order to find an optimal domain–specific non–linear
function approximator with a good generalization performance. The neural net-
works evolved by the algorithm have a feed–forward topology with shortcut con-
nections and arbitrary activation functions at each layer. This kind of topologies
has not been thoroughly investigated in literature, but is particularly well suited for
non–linear regression tasks.

The experimental results prove that, in such tasks, our algorithm can build, in
a completely automated way, neural network topologies able to outperform clas-
sic neural network models designed by hand. Also when applied to classification
problems, the performance of the obtained neural networks is fully comparable to
that of classic neural networks and in some cases noticeably better.

Center for Automated Learning and Discovery
School of Computer Science
Carnegie Mellon University



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2006 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2006 to 00-00-2006  

4. TITLE AND SUBTITLE 
ELeaRNT: Evolutionary Learning of Rich Neural Network Topologies 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Carnegie Mellon University,School of Computer 
Science,Pittsburgh,PA,15213 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

14 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



1

ELeaRNT: Evolutionary Learning of
Rich Neural Network Topologies

Matteo Matteucci
Center for Automated Learning and Discovery

School of Computer Science
Carnegie Mellon University
matteo@cs.cmu.edu

Abstract—In this paper we present ELeaRNT, an evolutionary
strategy which evolves rich neural network topologies in order to
find an optimal domain–specific non–linear function approxima-
tor with a good generalization performance. The neural networks
evolved by the algorithm have a feed–forward topology with short-
cut connections and arbitrary activation functions at each layer.
This kind of topologies has not been thoroughly investigated in lit-
erature, but is particularly well suited for non–linear regression
tasks. The experimental results prove that, in such tasks, our algo-
rithm can build, in a completely automated way, neural network
topologies able to outperform classic neural network models de-
signed by hand. Also when applied to classification problems, the
performance of the obtained neural networks is fully comparable
to that of classic neural networks and in some cases noticeably bet-
ter.

I. INTRODUCTION

Artificial neural networks are generic non–linear function ap-
proximators. In the literature, they have been used extensively
for various purposes like regression, classification, and feature
reduction. A neural network is a collection of basic units, neu-
rons, computing a non–linear function of their input. Every
input has an assigned weight that determines the impact this
input has on the output of the node. By interconnecting the cor-
rect number of nodes in a suitable way and setting the weights
to appropriate values, a neural network can approximate any
function, linear or non–linear. This structure of nodes and con-
nections, known as the network’s topology, together with the
weights of the connections, determines the network’s final be-
havior.

Given a neural network topology and a training set, it is pos-
sible to optimize the values of the weights in order to minimize
an error function by means of any backpropagation–based algo-
rithm or standard optimization techniques. During this learning
phase, the topology of the neural network plays a critical role
in whether or not the network can be trained to learn a particu-
lar dataset [13], but no algorithm exists for finding an optimal
solution for the design of the topology.

We cannot easily answer the question of how many nodes
and connections a neural network should have. Clearly, the sim-
pler the topology, the simpler the function the neural network

Matteo Matteucci is also at Dipartimento di Elettronica e Informazione –
Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
http://www.elet.polimi.it/˜matteucc

is computing. A simple topology will result in a network that
cannot learn to approximate a complex function, while a large
topology is likely to result in a network losing its generalization
capability. This loss of generalization is the result of overfitting
the training data: instead of approximating a function present in
the data, a neural network that has an overly complex structure
may have the ability to memorize the dataset, allowing noise
within the data to be learned, resulting in inaccurate predictions
on future samples.

Producing or deciding what will be a suitable network topol-
ogy is a task that is usually solved with heuristic algorithms or
left to human experts. The process of “manually” design such a
topology is iterative, often requires a certain amount of exper-
tise, and it is definitively tedious. There is no known automatic
way to systematically create an optimal or even near-optimal
topology for a specific task. Moreover, the correct topology is
application–dependent, so any method that aims to create the
correct topology should be mostly data driven.

In this paper, we present ELeaRNT an evolutionary strat-
egy capable of finding an effective application–specific network
topology by searching the space of possible rich topologies.
The search space is composed of feed–forward topologies with
shortcut connections and abitrary non–linear activation func-
tions for each layer. Our claim is that, by means of topologies
enriched by the use of different non–linear bases, it is possible
to improve the performance of the learned model with respect
to classical neural network architectures that use only sigmoidal
functions for hidden layers and linear functions for the output.
Our research starts from the work presented in [5] and aims to
provide an automatic tool for rich topology design.

In the next section, we briefly summarize the state of the art
in neural network topology search. Section III gives a general
description of the ELeaRNT algorithm and in section IV, V,
and VI we presents the details of the algorithm implementation.
Section VII shows the empirical validation of the algorithm on
synthetic and real datasets; the conclusion and future work are
presented in section VIII.

II. RELATED WORK

The problem of finding an optimal topology can be thought
of as a search problem, where the search space is the space of all
possible network topologies, and where the goal is to minimize
an error function while preserving generalization capabilities.



2

Usually, the neural network connectivity and the activation
functions are fixed by the human designer and the only param-
eters for model selection are the number of neurons for each
layer and, in some occasions, the number of layers. Those pa-
rameters are then optimized with respect to the dataset with a
trial & error procedure or using cross–validation.

More often a destructive search is used: first the algorithm
trains a big neural network on the data, and then prunes it to
increase its generalization capability while preserving its accu-
racy. The main issue with this kind of approach is the choice
of the initial network that has to be big “enough” in order to be
effectively pruned. In this case, techniques like Optimal Brain
Damage [14] or Optimal Brain Surgeon [10] are used to selec-
tively remove connections while maintaining network accuracy.

To overcome the issue of choosing an initial big network to
be trained and to reduce the computational complexity of train-
ing over–sized networks, constructive algorithms start with a
small neural network and then add nodes and connections dur-
ing training [3]. In regression tasks the cascade correlation
algorithm [4] is usually used. I uses the correlation between
the actual network error and the input to train new nodes to
be added to the network. This algorithm is particularly known
for the use of fast training algorithms (e.g., quickprop) and for
training a single neuron at a time in order to speed up the archi-
tecture development.

Finally, there are many works in literature on using genetic
algorithms to optimize neural networks, as can be seen from
the numerous papers on the topic [25] [2]. Genetic algorithms
have been used to optimize almost all the parameters that char-
acterize a neural network (e.g. weights, learning algorithm,
topology). The algorithm we present in this paper belongs to
the general framework for neural network evolution presented
in [26] and focuses on the development of rich neural network
topologies using an evolutionary strategy. The main interest in
this kind of topology is to state the effectiveness of using var-
ious activation functions for the network layers [17] [19] [16]
using standard benchmarks.

III. THE ELEARNT ALGORITHM

Genetic algorithms have proved to be a powerful search tool
when the search space is large and multimodal, and when it
is not possible to write an analytical form for the error func-
tion in such a space. In these applications, genetic algorithms
excel because they can simultaneously and thoroughly explore
many different parts of a large solution space seeking a suitable
solution. At first, completely random solutions are tried and
evaluated according to a fitness function, and then the best ones
are combined using specific operators. This gives the ability to
adequately explore possible solutions while, at the same time,
preserving from each solution the parts which work properly.

In Figure 1 we show the general scheme for a genetic algo-
rithm. The initial population is randomly initialized choosing
for each individual the number of layers according to a uniform
distribution. Once the number of layers is defined, the number
of neurons and the activation function for each of them is ran-
domly chosen using again a uniform distribution. At this point
the connectivity of the network in generated checking the fan–

Initialize/Evaluate
Population

Select Individuals for Mating

Mate Individuals to 
Produce Offspring

Mutate Offspring

Are Stopping Criteria
 Satisfied?

Insert Offspring
Into Population

Finish

Evaluate Offspring

Fig. 1. General schema for the genetic algorithm

in and fan–out of each layer in order to prune the unused ones
(see section IV-B).

After initializing the first population of random solutions,
each individual is evaluated, its fitness is computed1, and their
topologies are ranked according to it. We evolve the popula-
tion by selecting the individuals according to their fitness and
stochastically applying to them the genetic operators crossover
and mutation. Once a new offspring has been generated, the
new individuals are trained and their fitness is evaluated. This
process continues until a stopping criterium is met.

The basic genetic algorithm used in our implementation is
the Simple Genetic Algorithm Goldberg describes in his book [7].
It uses non-overlapping populations and at each generation cre-
ates an entirely new population of individuals by selecting from
the previous population, and then mating them to produce the
offspring for the new population. In all our experiments we use
elitism, meaning that the best individual from each generation
is carried over to the next generation2. Once the evolution is
terminated, the best individual defines the optimized network
topology for the specific application. During the evolution we
do not keep track of the weights learned during the fitness eval-
uations so, once the best individual has been selected, the rich
neural network is trained from a different starting point and the
best set of weights in cross-validation is selected.

Figure 2 presents a detailed description of the ELeaRNT al-
gorithm. In our setting we designed two crossover operators
(single point crossover and two point crossover), and we imple-
mented six different types of mutation in order to explore the
whole solution space in an effective way (see section V). The
genetic operators of our algorithm are designed taking into ac-

�

Genetic algorithms can be used also for network weights optimization, but
they are best suitable for global search instead of local optimization. We prefer
not to use them for weight optimization; in common applications it is possi-
ble to evaluate the error function and its derivative and effectively apply classic
optimization techniques. In our implementation we use Polak-Ribiere deter-
ministic conjugate gradient with golden line search [6].

�

We will show in the experimental section that, due to the convergence of the
population fitness, elitism is not mandatory to the effectiveness of the evolu-
tionary search process.



3

Initialize Population with
�

Random [valid] Individuals
Evaluate Fitness for all Individuals in the Population
do

do
Select Individuals � � and � � According to Fitness
with Probability �������
	�	

Select Crossover Operator �������� to Apply������ ������ ������������ � � � ���
with Probability  "!#�����$�$	�	����%� � �

����&� � �

with Probability �('*),+
Select Mutation Operator -/.(0 to Apply� � �� � -/.(0���� �� �

with Probability  "!#�('1),+� � �� � � ��
with Probability � '*),+

Select Mutation Operator -/.(0 to Apply� � �� � -/.(0���� �� �
with Probability  "!#� '1),+��� ��2� ����
Add Individuals ��� �� and ��� �� to New Population

until(Created New Population)
Evaluate Fitness for New Individuals in Population

until(Meet Stopping Criterium)

Fig. 2. The ELeaRNT algorithm

count their result on the evolved network implementing in such
a way an evolutionary strategy [12] to learn rich neural topolo-
gies.

As pointed out in [20], any algorithm attempting to design a
genetic algorithm capable of generating an application–specific
neural network topology has to address the following open–
ended questions (our answers will be the topic of the next sec-
tions):3

How should a neural network’s topology be represented in
a genotype3?3
How are the genetic operators defined for the particular
representation?3
How should a topology’s fitness be calculated?

IV. NETWORK REPRESENTATION

The first step in the design of a genetic algorithm is deciding
on the genotype, that is how to represent a neural network topol-
ogy as a chromosome. There are two mainstream approaches
in the research community: direct and indirected encoding. In
direct encoding, every detail of the architecture (i.e., number
of neurons, activation functions, connections, etc.) is specified
in the genotype. In indirect encoding, the chromosome con-
sists only of information about how the network should be con-
structed, such as a set of rules for building its architecture.

The main argument for this second, less explicit, encoding
schema its the biological plausibility. DNA, the encoding method4

The term genotype refers to the symbolic representation of each possible
solution, and the term phenotype refers to its realization.

Input Layer

Output Layer

o(.)

g(.)

f(.)

i(.)
Layer 0

Layer 1

Layer 2

Layer 3

Fig. 3. An example of a phenotype evolved by our evolutionary strategy

used as a blueprint for the human body, is clearly not large
enough to contain a direct encoding of the structure of the hu-
man brain. Apparently, DNA contains some sort of growth rules
to instruct the creation of the brain [11]. From our point of view
the performance with respect to the application and the gener-
alization ability is what matters and not biological plausibility,
hence we choose the direct coding schema. A direct coding
allows us a more focused design of the genetic operators that
result to be closed with respect to the chosen phenotype4.

Direct encoding has been proved to be less effective with
larger genotypes, because the effects of crossover and muta-
tion are often unfavorable for retaining any kind of high level
network structure that may have been evolved [15]. For this
reason, the coding we propose in section IV-B is suitable for
keeping the networks representation compact, trying to avoid
the “competing convention” issue that arises from the fact that
there is no significance to the order of the nodes in the hidden
layers of neural networks [8].

A. The Network Model: Phenotype

The term phenotype defines the implemented non–linear model
once the chromosome is decoded in a neural network. The ge-
netic algorithm we implemented evolves feed-forward topology
neural networks with shortcut connections and several activa-
tion functions (i.e., logistic, tanh, linear, exp, gauss, sin, cos),
eventually applying a different function for each neuron. An ex-
ample of a topology we are designing is represented in Figure 3.
The neural network is composed of 5 layers; each layer is fully
connected with some of the other layers in a feed-forward man-
ner implementing a generalized feed-forward topology.

Each layer has at least one neuron, and a different activation
function. The number of neurons in the first and last layers is
fixed, since that is the number of input and output variables of
the specific problem. The transfer function for the input layer
is usually the identity function and for the other layers it can
be any of the following: identity, logistic, tanh, linear, exp,6

i.e. applying a genetic operator to a valid genotype coding a rich neural
network topology produces another valid genotype coding another rich neural
network topology.



4

4 3 g(.) o(.)23 f(.)i(.)

Activation Function
Number of Neurons

0

0

1

0

0

0

0

0

0

0 0

Layer 0 Layer 1 Layer 2 Layer 3

Layer 3Layer 2Layer 1Layer 0

Layer 0

Layer 1

Layer 2

Layer 3

1

1 0

1

1

Connection

No Connection

Fig. 4. The genotype for the network in Figure 3

gaussian, sin, cos. This phenotype subsumes the classical fully
connected feed-forward architecture and allows more flexibility
for the use of various activation functions and for the capabil-
ity of describing non-fully connected topologies with shortcut
connections.

B. The Genetic Coding: Genotype

Each phenotype is coded by a two part genotype. The first
part encodes the layer information (i.e. number of neurons and
activation function), and the second part encodes the connec-
tivity of the network (see Figure 4). The number of neurons in
the first and in the last layer is fixed since they are fixed by the
specific application. To specify a proper feed–forward neural
network only the elements above the diagonal in the adjacency
matrix can differ from

�
. Since we chose the identity function

for the first layer, the activation function for that part of the
genotype cannot be changed during the evolution.

It is possible that during the genetic evolution a genotype
codes an “invalid” phenotype. That happens when either a col-
umn (i.e., the fan–in a neuron layer) or a row (i.e., the fan–out
of a neuron layer) is filled with

�
s implying that a group of neu-

rons is not reachable from the input or does not participate in
the final output. To avoid this issue, the genetic operators have
been designed as closed to the phenotype family and, in case
they detect any irregularity, they correct the genotype.

V. GENETIC OPERATORS

In our implementation we define two crossover operators,
and six different mutation operators. Crossover and mutation
occurrences have different probabilities, and each crossover or
mutation operator has uniform probability once the application
of a specific genetic operation has been chosen.

The two crossover operators combine two different topolo-
gies in two different manners, both trying to recombine the
genotype while preserving functional blocks. The six mutation
operators have a different effect on the topology of the net. Two
modify the number of neurons in a layer and its activation func-
tion so they work only on the first part of the genotype. Two
operators modify the structure by removing or adding a new
layer, and the last two operators modify the connectivity of the
net (generally without changing the layers in it).

A. Single Point Crossover

This method combines two networks by cutting their topolo-
gies in two pieces using a cutting surface that entirely separates
the input and the output of the network.

In order to guarantee this operator is closed with respect to
the valid genotype family, we have to restore all the connections
between the pieces of the networks. Any connection coming out
of the input half of the first network has to be joined to any con-
nection going into the output part of the second network, and
viceversa. In this manner the final number of connections be-
tween the newly generated individuals is greater than the origi-
nal one, but the validity of the genotype is preserved.

Figure 5 describes the effect of the single point crossover op-
erator on two different topologies. Two random points in the
first part of the two genotypes are chosen. The input part of the
first genotype is combined with the second part of the output
genotype and viceversa. To obtain the final connection matrix
of each new individual, the top left sub–matrix of one of the
parents is used as top left sub–matrix of the child and the bot-
tom right sub–matrix of the other parent is used as bottom right
sub–matrix of the child. This operation preserves the internal
connectivity of the two parts joined in the new individual, and
these two parts are joined by filling the top right sub–matrix of
the genotype.

Cell �������	� in the top right sub–matrix of the genotype has a
connection iff any of the cells in � +�
 row of the parent providing
that input part have a connection and any of the cells in � +�
 col-
umn of the parent providing the output part have a connection.

B. Two Point Crossover

Figure 6 describes the effect of the two point crossover oper-
ator. This method combines two networks by extracting a con-
nected subgraph from each of them, and exchanging the two
subgraphs between the networks.

In order to guarantee this operator is closed with respect to
the valid genotype family, we have to restore all the connec-
tions between the remaining network and the new block. Any
connections coming out of or going into the new block have to
be joined to any connections going into or coming out of the
old block. The final number of connections between the newly
generated individuals is again greater than the original one, but
the validity of the genotype is preserved.

Figure 6 illustrates the application of the operator. Two ran-
dom points for each first part of the two genotypes are chosen
and the blocks between these two cutting points are exchanged.
To obtain the final connection matrix of each new individual,
the top left, top right, and bottom right sub–matrixes of one of
the parents are used as top left, top right, and bottom right sub–
matrixes of the child and the central sub–matrix of the other
parent is used as central sub–matrix of the child. This operation
preserves the internal connectivity of the two parts joined in the
new individual.

Note that, to join the new block into the “hosting” network,
the top middle and right middle sub–matrixes have to be filled
in a specific way. A cell �������	� in the top middle sub–matrix has
a connection iff any of the cells in the � +�
 row of the original
top middle sub–matrix of the parent network hosting the new



5

Cut Point Cut Point

Cut Point Cut Point

Parent 1.in Parent 1.out Parent 2.in Parent 2.out

Parent 2.in Parent 1.out Parent 1.in Parent 2.out

0

0

1

0

0

0

0

0

0

0 0

1

0 0

1

0

0

0

1

0

0

0

0

0

0

0 0

1

0

1

1

0

1

0

1

0

0 0 0 0 0

0

0

1

0

1

0 1

0

0 0

0

0

00

0

0

0

0

0

0 0

0 0

0

0

0

0

0

0 0

0 1

1

0

0

1

0

0

0

0

0

0

0 0

1

0 0

1

0

0

0

1

0

0

0

0

0

0

0 0

1

0

1

1

0

0 0 0 0 000 0 00

0

0

0

0 0

0 1

10 0 0 0

0 0 0 0

0 0 0

0 0 0

1 1 1

1 1 1

0

0

1

1

Cut Point Cut Point

Parent 2.in Parent 1.out

Parent 1.in Parent 2.inParent 1.out Parent 2.out

Parent 2.outParent 1.in

Cut Point Cut Point

Fig. 5. The single point crossover genetic operator



6

Cut

Parent 1.block

Cut

Cut
Cut

Parent 2.block

Parent 1.block

Parent 2.block

0

0

1

0

0

0

0

0

0

0 0

1

0 0

1

0

0

0

1

0

0

0

0

0

0

0 0

1

0

1

1

0

1

0

1

0

0 0 0 0 0

0

0

1

0

1

0 1

0

0 0

0

0

00

0

0

0

0

0

0 0

0 0

0

0

0

0

0

0 0

0 1

1

0

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0 1

0

0 0 0

0

0 0 0

0 0

00

00

0

0

0

0

0

1

0

0

0

0

0

0

0 0

0

00

0

0 0

1

0

0 0 0

1 1 1

1 1 1

1

1

1

0

1

0

1 1

0

Cut Point 1 Cut Point 2 Cut Point 1 Cut Point 2

Cut Point 1 Cut Point 2 Cut Point 1 Cut Point 2

Parent 1.block

Parent 1.block

Parent 2.block

Parent 2.block

Fig. 6. The TwoPointCrossover genetic operator



7

4 3 g(.) o(.)23 f(.)i(.)

Mutation Point

0

0

1

0

0

0

0

0

0

0 0

1

1 0

1

1

4 f(.) o(.)23 i(.)

0

0

1

0

0 0 0

1

1

(a)

(b)

(c)

Fig. 7. The MutatorDropNode genetic operator

4 3 g(.) o(.)23 f(.)i(.)

Mutation Point

0

0

1

0

0

0

0

0

0

0 0

1

1 0

1

1

4 3 g(.) o(.)23 f(.)i(.)

0

0

1

0

0

0

0

0

0

0

1

1 0

1

1

2 h(.)

0 000

0

0

1

1

0

1

Fig. 8. The MutatorAddNode genetic operator

block have a connection and any of the cells in � +�
 column of
the parent providing the block have a connection. A cell ����� � �
in the right middle sub–matrix has a connection iff any of the
cells in the � +�
 column of the original right middle sub–matrix
of the parent network hosting the new block have a connection
and any of the cells in � +�
 row of the parent providing the block
have a connection.

C. Mutator: Drop Node

This mutation operator randomly selects a layer and removes
it from the network structure. Figure 7 illustrates the applica-
tion of the operator. Before removing the layer from network
structure, each input connection of it is connected to all the des-
tination of its output connections5. This operator is guaranteed
to be closed with respect to the valid genotype family, thus a
genotype modified by it does not require to be checked.

D. Mutator: Add Node

This mutation operator adds a layer to the network topology.
Figure 8 illustrates the application of the operator. An existing
layer is randomly selected and its connectivity is duplicated.
After that a random activation function and a different number
of neurons are initialized. Since a valid copy of an existing
neuron connectivity sub–matrix is used, this operator is guar-
anteed to be closed with respect to the valid genotype family,
so a genotype modified by it does not need to be checked.

�

This is equivalent to setting the activation function of the layer to the iden-
tity, but reduces the number of weights for the network and also the number of
free parameters.

E. Mutator: Number of Neurons

This mutation operator, changes the number of neurons in a
specific layer of the network. Figure 9 illustrates the applica-
tion of the operator. A random mutation point is chosen and the
number of neurons in the specific layer is changed according to
a uniform distribution. This operator is guaranteed to be closed
with respect to the valid genotype family, thus a genotype mod-
ified by it does not require to be checked.

4 3 g(.) o(.)23 f(.)i(.)

Mutation Point

2 3 g(.) o(.)23 f(.)i(.)

Fig. 9. The MutatorNodeNumNeur genetic operator

F. Mutator: Drop Connection

This mutation operator removes a connection from the con-
nectivity matrix of the network. Figure 10 illustrates the ap-
plication of the operator. Once the connection is removed, the
operator checks for layers that are not reachable from the input
or that do not participate in the output of the network. These
layers have to be removed and this can lead to the complete de-
struction of the network. This operator is not guaranteed to be
closed with respect to the valid genotype family, thus a geno-
type modified by it has to be checked. In the case a non–valid



8

0

0

1

0

0

0

0

0

0

0 0

1

1 0

1

1

0

0

1

0

0 0 0

0

1

4 3 g(.) o(.)23 f(.)i(.)

Mutation Point

4 o(.)23 f(.)i(.)

Fig. 10. The MutatorDropConnection genetic operator

0

0

1

0

0

0

0

0

0

0 0

1

1 0

1

1

4 3 g(.) o(.)23 f(.)i(.)

Mutation Point

0

0

1

0

0

0

0

0

0

0 0

1

1

1

1

4 3 g(.) o(.)23 f(.)i(.)

1

Fig. 11. The MutatorAddConnection genetic operator

genotype is generated, a new one is randomly initialized and
substituted for the original one.

G. Mutator: Add Connection

This mutation operator adds a new connection in the connec-
tivity matrix of the network. Figure 11 illustrates the applica-
tion of the operator. If the network is completely connected, the
genotype is left unchanged. This operator is guaranteed to be
closed with respect to the valid genotype family, thus a geno-
type modified by it does not require to be checked.

H. Mutator: Activation Function

This mutation operator changes the activation function in a
network layer. Figure 12 illustrates the application of the op-
erator. A random mutation point is chosen and the activation
function in that specific layer is changed according to a uniform
distribution over the available activation functions. This opera-
tor is guaranteed to be closed with respect to the valid genotype
family, thus a genotype modified by it does not require to be
checked.

4 3 g(.) o(.)23 f(.)i(.)

Mutation Point

4 3 h(.) o(.)23 f(.)i(.)

Fig. 12. MutatorNodeActFunc genetic operator

VI. FITNESS FUNCTION

The average of the squared differences between the desired
output

�
and the actual output � of a neural network (Mean

Squared Error) is commonly used as a fitness measure in this
kind of applications, and it is called standard fitness:

 ���
�
�

� ��� �*! � � �	�
This is the measure which most implementations of genetic

algorithms operating on neural networks try to minimize, but
when calculating a network’s overall performance, it is impor-
tant to take into account also how the network is going to be
used and what its generalization ability will be (i.e., how well
the model will do when it is asked to make new predictions for
data it has not already seen).

In our case, a network is tested using k–fold cross-validation [21].
The data set is divided into 
 subsets. Each time, one of the 

subsets is used as the test set and the other 
�!  subsets are put
together to form a training set. Then the average of the stan-
dard fitness across all 
 trials is computed. The variance of the
resulting estimate is reduced as 
 is increased. But, since the
training algorithm has to be rerun from scratch k times, it takes
k times as much computation to make a fitness evaluation.

VII. ALGORITHM EMPIRICAL VALIDATION

We conducted a set of experiments on several datasets to
evaluate the performance of our genetic search for an effective



9

rich neural network topology6. The main risk in this kind of ap-
plications is overfitting; this is particularly relevant in our case
since we allow the network to get large and highly non–linear.
To check if our algorithm suffers from this problem, in the first
set of experiments we use a synthetic dataset with a sinusoidal
wave and gaussian noise.

The second set of experiments is based on real data from the
suite of benchmarking problems PROBEN1 [18] and explores
two problems for which neural networks are commonly used:
regression and classification. The main reason for these ex-
periments is to prove that in real applications the performance
of the networks obtained by the genetic algorithm without any
a–priori knowledge or design effort is reasonably close to the
performance of the networks obtained by “educated” manual
design.

A. Synthetic data

In the first set of experiments, the algorithm tries to find the
correct neural network to fit a sinusoidal dataset with gaussian
noise:

� ��� ��� � ���	� ��
� ��� 5 � � ��� � ���
Note that, in this synthetic example, the process generating the
data belongs to the family of models that can be represented
by our algorithm: a single neuron network with a sinusoidal
activation function.

Figure 13 shows one of the models learned by the algorithm.
It presents one of the issues that typically arise with the use of
a genetic search: the “bloat” phenomenon. Especially with
genetic programming, the size of the solution tends to grow
rapidly as the population evolves; Angeline [1], for example,
observes that many of the evolved solutions contained code that,
when removed, did not alter the result produced. In our case
would be possible to intervene on the models and remove the
nodes that are not useful using an a-posteriori analysis of the
weights in the network.

Since this is a unidimensional problem, we can plot the pre-
dictions of the networks during one of the evolutions (see Fig-
ure 14). From the plots, it is possible to understand how, during
�
In all the experiments we use a population with ��� individuals, the evolution

is stopped after ��� generations, �����������! "�$# %&� , �('*),+- .�$# ��� , and individuals
are selected with probability proportional to their fitness.

sin(.)

exp(.)

y

x

6.54 E-03

5.98

bias = 1

-7.25 E-03

-4.36 E-02

1.36

Fig. 13. A model learned by the algorithm for the sinusoidal dataset

the evolution, various functions are chosen in order to fit the
data, and how the genetic algorithm finally stabilizes on the si-
nusoid model.

B. PROBEN1 Benchmarks

The second set of experiments uses four real datasets from
the PROBEN1 test suite. The benchmarking in this case is
done strictly following the rules presented in [18] in order to
obtain results comparable with the ones presented in the paper.
Two datasets are chosen for regression tasks and two datsets for
classification tasks. For each of them we use the three different
train/validation/test splits proposed by the PROBEN1 suite.

In the regression case, the error measure presented is the
squared error percentage, a normalized version of the mean
squared error that takes into account the number of output coef-
ficients in the problem representation and the range of the out-
put values used:

/1032 �  � � � � '54�6 ! � '�798
5 � 2

:
�

;=<�>

?
�

7 <*>
� � ; 7 ! � ; 7�� �

where � '�798 and � '@4A6 are the minimum and maximum values of
the output coefficients in the problem representation (assuming
these are the same for all output nodes), 5 is the number of
output nodes of the network, and

2
is the number of patterns

in the dataset considered. The two datasets used in this kind of
task are:

1) The building datset: for this dataset, the goal of the
non-linear function approximator is to predict the energy
consumption in a building. More specifically, the task
is to predict the hourly consumption of electrical energy,
hot water, and cold water, based on the date, time of the
day, outside temperature, outside air humidity, solar ra-
diation, and wind speed. It has 14 input & 3 output real
variables, and 4208 examples. This problem in its orig-
inal formulation was a prediction task; complete hourly
data for four consecutive months was given for training,
and output data for the following two months is to be pre-
dicted. The dataset building1 reflects this formula-
tion of the task – its examples are in chronological order.
The other two versions, building2 and building3
are random permutations of the examples, simplifying the
task to interpolation7.

2) The flare dataset: in this dataset, the function approx-
imator is trained to predict solar flares. The task is to
forecast the number of solar flares of small, medium, and
large size that will occur during the next 24 hours period
in a fixed active region of the sun surface. Input values
describe previous flare activity and the type and history
of the active region. The problem has 24 input & 3 out-
put real variables, and 1066 examples, but 81% of the
examples are zero in all three output values resulting in

B
These datasets were created for the PROBEN1 test suite based on problem

A of “The Great Energy Predictor Shootout - The First Building Data Analy-
sis And Prediction Competition” organized in 1993 for ASHRAE Meeting in
Denver, Colorado.



10

-4

-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Best Individual in Pop � Best Individual in Pop >

-4

-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Best Individual in Pop � Best Individual in Pop �

-4

-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Best Individual in Pop � Best Individual in Pop �

-4

-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Best Individual in Pop � Best Individual in Pop �

Fig. 14. Evolution for the sinusoidal model with Gaussian noise over time



11

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 P
op

ul
at

io
n 

F
itn

es
s

Generations

0.0016

0.0018

0.002

0.0022

0.0024

0.0026

0.0028

0.003

0.0032

0.0034

0.0036

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 P
op

ul
at

io
n 

F
itn

es
s

Generations

Population average fitness on the building1 dataset Population average fitness on the flare1 dataset

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 P
op

ul
at

io
n 

F
itn

es
s

Generations

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 P
op

ul
at

io
n 

F
itn

es
s

Generations

Population average fitness on the cancer2 dataset Population average fitness on the glass2 dataset

Fig. 15. Convergence in the average fitness of the population for the 4 datasets

a “bursty” phenomenon difficult to predict using smooth-
ing methods8.

For the classification tasks the error measure presented is the
classification error. We use the  ! ��� !�� encoding for �
classes using output values

�
and  ; the classification method

used is the winner takes all (i.e., the output with the highest
activation determinates the class). The two datasets used in this
kind of task are:

1) The cancer dataset: the task is to diagnose breast can-
cer. The neural network has to classify a tumor as either
benign or malignant, based on cell descriptions gathered
by a microscopic examination. Input attributes are, for
instance, the clump thickness, the uniformity of cell size
and cell shape, the amount of marginal adhesion and the
frequency of bare nuclei. The dataset has 9 input real
variables, 2 output classes, and 699 examples9.

2) The glass dataset: the results of a chemical analysis of
glass splinters (percent content of 8 different elements)

�
This dataset was created based on the “solar flare” problem dataset from the

UCI repository of machine learning database.�
This dataset was created based on the “breast cancer Wisconsin” problem

dataset obtained from the University of Wisconsin Hospitals, Madison from Dr.
William H. Wolberg and is available at the UCI repository of machine learning
databases [24].

plus the refractive index are used to classify a sample
as either float processed or non float processed building
windows, vehicle windows, containers, tableware, or heat
lamps glass. This task is motivated by forensic needs in
criminal investigations, and in this formulation it has 9
input real variables, 6 output classes, and 214 examples.
From previous analysis two of the variables are known to
have hardly any correlation with the result. As the num-
ber of examples is quite small, the problem is sensitive to
algorithms that waste information10.

The graphs in Figure 15 show the average population fitness
during the evolution of the models for one splitting of each of
the datasets. In all the four cases the algorithm has converged
to a stable population of models. As can be seen from Tables I
and II, the neural networks evolved by our genetic algorithm
mostly perform similarly to the hand–designed ones presented
in the PROBEN1 paper for the flare and cancer datasets.
The results in these cases are fully comparable and the model
learned by the genetic algorithm can obtain better performance
depending on the split. On the building and glass dataset
our networks clearly outperform the best models presented in
the PROBEN1 suite independent of the specific spitting of the

���
The dataset was created based on the “glass” problem dataset from the UCI

repository of machine learning databases.



12

data.
Also in these cases, as we did for the synthetic dataset, it is

possible to look at the model found by the algorithm and try to
use them in an explanatory way, but they are usually complex
and generally they do not convey any intuitive insights about
the phenomenon modelled. Sometimes, like with the build-
ing1 dataset, the resulting model can lead to an interpretation
of the non–linear function implementing the regression. The
model developed for the building1 dataset presents a neural
network with three layers implementing each a specific func-
tion:3

9 neurons with tanh activation function which normalize
the data between !  and  3
9 neurons with sin activation function to capture the peri-
odicity of the phenomenon3
3 neurons with logistic activation function to transform the
data in the range between

�
and  

The solutions automatically generated for classification tasks
usually have a logistic activation function on the output layer
(and that is also the usual design rule in this kind of tasks), but
the rest of the functions implemented are hard to interpret.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented ELeaRNT, a new evolutionary
strategy that evolves rich neural network topologies and finds
domain–specific neural networks for classification and regres-
sion tasks. We presented the details of our genetic operators and
the results showing how they are able to find rich topologies in
a completely automated way. The generalization performance
of the obtained networks is fully comparable to that of hand de-
signed ones, outperforming those for some of the datasets used
for benchmarking.

In this paper we optimize the neural network topology with
respect to the generalization capability of the trained network

PROBEN1 Best Evolved Model
Validation Testing Validation Testing

building1 0.7583 0.6450 0.4538 0.3983
building2 0.2629 0.2509 0.2049 0.1887
building3 0.2460 0.2475 0.1866 0.1856

flare1 0.3349 0.5283 0.3196 0.5506
flare2 0.4587 0.3214 0.4310 0.2861
flare3 0.4541 0.3568 0.4517 0.3576

TABLE I
SQUARED ERROR PERCENTAGE FOR THE REGRESSION TASKS

PROBEN1 Best Evolved Model
Validation Testing Validation Testing

cancer1 1.714 1.149 1.142 2.873
cancer2 1.143 5.747 1.714 4.023
cancer3 2.857 2.299 2.857 3.448
glass1 31.48 32.08 25.93 28.30
glass2 38.89 52.83 33.33 39.62
glass3 33.33 33.96 31.48 30.19

TABLE II
CLASSIFICATION ERROR FOR THE CLASSIFICATION TASKS

and to do that we use the standard fitness to evaluate the individ-
uals in the current population. This fitness function is designed
for regression problems, and we suggest that another fitness
function, better suited for classification, would achieve better
results in classification tasks [22]. Moreover, if the network
is in a situation where learning will be taking place frequently,
even at real-time speeds, then a network’s learning speed would
be an important part of the topology design, and the algorithm
should use an appropriate term in the fitness computation to op-
timize correctly the topologies for this kind of task.

A further improvement to the algorithm should include some
internal heuristics to guide the genetic operators in a credit/blame
fashion [23] during the search of the solution. Using informa-
tion about parts of the actual solution it would be possible to
direct the operators on those parts that do not partecipate to the
final result or to those part that might need more neurons. This
kind of approach would lead to a more informative evolution
of the population with faster convergence and more accurate
results.

Finally, since the average population fitness stabilizes around
the best individuals at the end of the evolution, it would be pos-
sible to use the whole population of networks to implement a
committee of network instead of using only the best individ-
ual [9].

ACKNOWLEDGEMENTS

I would like to thank my advisor Manuela Veloso for her in-
valuable advices during the duration of the project and Elena
Eneva for her help and suggestions on the previous versions of
this paper. This research was sponsored by an Ambassadorial
Scholarship from the Rotary International, a fellowship from
the Center for Automated Discovery, and a DARPA Grant No.
F30602-98-2-0135. The views and conclusions contained in
this document are those of the authors and should not be in-
terpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the funding institu-
tions.

REFERENCES

[1] P. J. Angeline. Genetic programming and emergent intelligence. In Ken-
neth E. Kinnear, Jr., editor, Advances in Genetic Programming, pages
75–98. MIT Press, 1994.

[2] K. Balakrishnan and V. Honavar. Evolutionary Design of Neural Archi-
tectures: A Preliminary Taxonomy and Guide to Literature. Technical
Report CS TR 95-01, Department of Computer Science, Iowa State Uni-
versity, Ames, Iowa, 1995.

[3] C. Campbell. Constructive learning techniques for designing neural net-
work systems. In CT Leondes, editor, Neural Network Systems Technolo-
gies and Applications. Academic Press, 1997.

[4] S. E. Fahlman and C. Lebiere. The cascade-correlation learning archi-
tecture. In D. S. Touretzky, editor, Advances in Neural Information Pro-
cessing Systems, volume 2, pages 524–532, Denver 1989, 1990. Morgan
Kaufmann, San Mateo.

[5] G.W. Flake. Nonmonotonic activation functions in multilayer percep-
trons. PhD thesis, Department of Computer Science University of Mary-
land, December 1993.

[6] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons,
1987.

[7] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley Publishing Company, Inc., Reading,
MA, 1989.

[8] P. J. B. Hancock. Genetic algorithms and permutation problems: a com-
parison of recombination operators for neural net structure specification.
In D Whitley, editor, Proceedings of COGANN workshop, IJCNN, Balti-
more. IEEE, 1992.



13

[9] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Trans.
Pattern Analysis and Machine Intelligence, 12(10):993–1001, 1990.

[10] B. Hassibi and D. G. Stork. Second order derivatives for network pruning:
Optimal brain surgeon. In Advances in Neural Information Processing
Systems, volume 5, pages 164–171. Morgan Kaufmann, CA, 1992.

[11] H. Kitano. Designing neural networks using genetic algorithms with
graph generation system. Complex Systems, 4(4):461–476, 1990.

[12] F. Kursawe. Evolution strategies for vector optimization. In Procedings
of the Tenth International Conference on Multiple Criteria Decision Mak-
ing, pages 187–193, Taipei, China, 1992.

[13] S. Lawrence, C. L. Giles, and A. C. Tsoi. What size neural network
gives optimal generalization? Convergence properties of backpropaga-
tion. Technical Report UMIACS-TR-96-22 and CS-TR-3617, University
of Maryland, April 1996.

[14] Y. LeCun, J. Denker, S. Solla, R. E. Howard, and L. D. Jackel. Optimal
brain damage. In D. S. Touretzky, editor, Advances in Neural Information
Processing Systems II, San Mateo, CA, 1990. Morgan Kauffman.

[15] Y. Liu and X. Yao. A population-based learning algorithm which learns
both architectures and weights of neural networks. Chinese Journal of
Advanced Software Research, 3(1):54–65, 1996.

[16] D. Lovell and A. Tsoi. The performance of the neocognitron with various
s-cell and c-cell transfer functions. Technical report, Intelligent Machines
Lab., Dept. of Elec. Eng., Univ. of Queensland, 1992.

[17] G. Mani. Learning by gradient descent in function space. Technical Re-
port WI 52703, Computer Sciences Department, University of Winscon-
sin, Madison, 1990.

[18] L. Prechelt. Proben1: A set of neural network benchmark problems and
benchmarking rules. Technical Report 21/94, University of Karlsruhe,
1994.

[19] E. Ronald and M. Schoenauer. Genetic lander: An experiment in accu-
rate neuro-genetic control. In The Third Conference on Parallel Problem
Solving from Nature, pages 452–461. Springer-Verlag, 1994.

[20] J. Schaffer, D. Whitley, and L. Eshelman. Combinations of genetic al-
gorithms and neural networks: A survey of the state of the art. In Pro-
ceedings of the International Workshop on Combinations of Genetic Al-
gorithms and Neural Networks, pages 1–37, 1992.

[21] M. Stone. Cross-validation choice and assessment of statistical proce-
dures. Journal Royal of Statistical Society, B(36):111–147, 1974.

[22] B. A. Telfer and H. H. Szu. Energy functions for minimizing misclas-
sification error with minimum-complexity networks. Neural Networks,
7(5):809–818, 1994.

[23] A. Teller and M. Veloso. Neural programming and an internal reinforce-
ment policy. In John R. Koza, editor, Late Breaking Papers at the Genetic
Programming 1996 Conference, pages 186–192, Stanford University, CA,
USA, 28–31 1996. Stanford Bookstore.

[24] W. H. Wolberg and O. L. Mangarasian. Multisurface method of pattern
separation for medical diagnosis applied to breast cytology. Proceedings
of the National Academy of Sciences of the USA, 87:9193–9196, 1990.

[25] X. Yao. A Review of Evolutionary Artificial Neural Networks. Common-
wealth Scientific and Industrial Research Organization, Victoria, Aus-
tralia, 1992.

[26] X. Yao. Evolving artificial neural networks. PIEEE: Proceedings of the
IEEE, 87, 1999.

Matteo Matteucci got a Laurea degree in Computer
Engineering from Politecnico di Milano in 1999 and
a Masters degree in Knowledge Discovery & Data
Mining from Carnegie Mellon University in 2002. He
is a PhD student in Computer Engineering and Auto-
matics at Politecnico di Milano. His main research in-
terests include: soft computing (fuzzy systems, neu-
ral networks, genetic algorithms), reinforcement learn-
ing, statistical approaches to learning and discovery,
autonomous robots, behavior engineering, and com-
puter vision.




